# Xiuchuan Zhang

Personal Website

This is Xiuchuan's personal website.
I plan to post some of my current learning and review notes on it.
If you have any questions or suggestions, welcome to comment in my posts.

These are common mathematical symbols from 一份不太简短的 LATEX2e 介绍 for future using.
Other sources: LaTeX 命令符号

### Common mathematical symbols

Symbol Command
$a_{1}$ a_{1}
$x^{2}$ x^{2}
$e^{-\alpha t}$ e^{-\alpha t}
$a^{3}_{ij}$ a^{3}_{ij}
$e^{x^2} \neq {e^x}^2$ e^{x^2} \neq {e^x}^2
 $\sqrt{x}$ \sqrt{x} $\sqrt{ x^2 + \sqrt{y}}$ \sqrt{ x^2 + \sqrt{y}} $\sqrt[3]{2}$ \sqrt[3]{2} $\surd[x^2 + y^2]$ \surd[x^2 + y^2]
 $\overline{m+n}$ \overline{m+n} $\underline{m+n}$ \underline{m+n}
 $\underbrace{ a+b+\cdots+z }_{26}$ \underbrace{ a+b+\cdots+z }_{26}
 $\vec a$ \vec a $\overrightarrow{AB}$ \overrightarrow{AB}
 $1\frac{1}{2}$ 1\frac{1}{2} $\frac{ x^{2} }{ k+1 }$ \frac{ x^{2} }{ k+1 } $x^{ \frac{2}{k+1} }$ x^{ \frac{2}{k+1} } $x^{ 1/2 }$ x^{ 1/2 } $\displaystyle\frac{n!}{k!(n-k)!} = \binom{n}{k}$ \displaystyle\frac{n!}{k!(n-k)!} = \binom{n}{k}
 $\sum_{i=1}^{n}$ \sum_{i=1}^{n} $\int_{0}^{\frac{\pi}{2}}$ \int_{0}^{\frac{\pi}{2}} $\prod_\epsilon$ \prod_\epsilon
 $\displaystyle\lim_{x \to \infty} \exp(-x) = 0$ \displaystyle\lim_{x \to \infty} \exp(-x) = 0 $\displaystyle\sum_{i=1}^{10} t_i$ \displaystyle\sum_{i=1}^{10} t_i $\int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x$ \int_0^\infty \mathrm{e}^{-x}\,\mathrm{d}x $\hat{f}(x,y) = \underset{(s,t)\in S_{xy}}{\mathrm{median}}$ $\lbrace g(s,t) \rbrace$ \hat{f}(x,y) = \underset{(s,t)\in S_{xy}}{\mathrm{median}} \lbrace g(s,t) \rbrace
 abc →  ← abc abc → $\,$ ← abc \, abc → $\;$ ← abc \; abc → $\enspace$ ← abc \enspace abc → $\quad$ ← abc \quad abc → $\qquad$ ← abc \qquad abc → $\hspace{3em}$ ← abc \hspace{3em}

### Others:

Support

Thank you for your supporting

Scan It